Stretching and Shrinking: Investigation 2 Big Ideas: Similar Figures

Problem 2.1 The Wumps	Students explored the effect of coordinate rules on resulting figures. Students determined that in order for two figures to be similar the coefficients in the coordinate rule have to be similar.	
Problem 2.2 Mugs Hats	Students continue figures. The Coefficient is variable is being m Ex. $3 x$ the coeffici The X axis is the h The coefficient of will get. When you add or When you add it moves that numb The Y axis is the v The coefficient of will be. When you add or When you add it m moves that numb Examples...	to explore the effect of coordinate rules (x, y) on resulting e number that is attached to the variable, is what the ltiplied by is the coefficient. t is 3 ; x is being multiplied by 3 rizontal axis in the coordinate rule is how many times wider the object btract to the x cooridinate the object moves right or left. ves that number of spaces right and when you subtract it of spaces left. tical axis in the coordinate rule is how many times taller the object btract to the y cooridinate the object moves up or down. oves that number of spaces up and when you subtract it of spaces down.
	(2x, 2y)	2 times wider and 2 times taller
	(3x, 5y)	3 times wider and 5 times taller
	$(x+3, y-4)$	Same height and width moved right 3 spaces and down 4 spaces on the graph.
	$(x-5, y+6)$	Same height and width moved left 5 spaces and up 6 spaces.
	$(3 x+4,1 / 2 y+3)$	3 times wider and right 4 spaces, half as tall and up 3 spaces.

Problem 2.3
Mouths and Noses

Scale Factor and Similarity.
Similar figures - have congruent corresponding angles, have the same general shape but are different sizes.
Scale Factor: is how many times larger one image is than the other. In order for a figure to be similar the height and width between two figures has to have the same scale factor.

The scale factor from A to B is 3 because $2 \times 3=6$ and $3 \times 3=9$

The scale factor from B to A is $\frac{1}{3}$ because $\frac{1}{3} \times 6=2$ and $\frac{1}{3} \times 9=3$

